
 27

Chapter 3

Designing Your Implementation
After you have finished designing your logical hierarchy, you should know which controls in

your product are provided by the UI framework and which are not. Designing the imple-

mentation of your controls depends upon this distinction:

 For controls provided by the framework, you must adhere to the UI framework’s

guidelines to make them accessible. For example, if you are using the Windows

Presentation Foundation (WPF) framework, you would adhere to WPF’s guidelines for

accessibility.

 For custom controls not provided by the UI framework, you must implement a native UI

Automation (UIA) solution. You have already mapped these custom controls to individual

elements in the logical hierarchy, so now you must design the native UIA solution for

each of these elements.

The key to designing a native solution for programmatic access is to fully expose the ele-

ment’s functionality so that a user of assistive technology (AT) can use the control. There are

two different processes for designing the implementation of a native solution:

 A. Control maps to a UIA Control Type. If your custom control can map directly to

a UIA Control Type, you must design the control’s functionality according to the UIA

Control Type Specification, including any additional requirements for other Patterns

and Properties that the control may exhibit. Unless it is prohibited, a Control Type can

support additional Patterns and Properties than what is required or suggested by the

UIA Specification.

 B. Control does not map to a UIA Control Type. In the case where your custom

control does not map to a UIA Control Type, then you must determine the control’s

functionality and design the control around the Control Patterns and Properties using

the requirements of the UIA Specification. It is worth noting again that you should avoid

creating new custom controls as much as possible because the cost for development,

documentation, and help on how to interact with the control is significant, and ATs may

not know how to interact with the control.

In this chapter, we talk about both of these design processes, focusing on controls that do

map directly to a UIA Control Type. We also touch on the UIA Methods and Events that are

needed to implement your controls and point you to resources for actually implementing

them.

 Engineering Software for Accessibility 28

Product Example Continued: Employee Timecard
In the last chapter, we used an employee timecard, built on a Win32 framework (Figure 3-1),

to design a logical hierarchy. We continue to use the timecard in this chapter to demonstrate

how to design the implementation of custom controls.

FIGURE 3-1 Product example: employee timecard built on a Win32 framework

As you may recall, all the elements in the timecard, except for the grid, were Win32 common

controls. By mapping out a logical hierarchy for our timecard (Figure 3-2), we can see where

custom accessibility support is needed. Because Win32 does not provide a “Grid” control, we

needed to map out the individual elements that make up that the control, so that the control

will expose correctly to AT.

 Chapter 3 Designing Your Implementation 29

FIGURE 3-2 Logical hierarchy for the employee timecard

Prep Work: Creating the Implementation Table
By now, you should have an understanding of what Control Types, Control Patterns, and

Properties are. Before we proceed, let’s briefly recap these terms:

 Control Type A pre-defined set of patterns, properties, and conditions used to

define a control’s basic appearance and functionality.

 Control Pattern Defines the control’s actions or behaviors.

 Properties Provides specific information about the UI element or the Control

Patterns supported.

When you design a native solution for a custom control in UIA, you are essentially creating an

engineering “recipe” using the UIA Specification for UIA Control Types, Control Patterns,

 Engineering Software for Accessibility 30

Properties, and Events. These “ingredients” together will be used to implement an accessible

custom control.

Before we proceed with designing our controls, let’s do some prep work. We will create an

implementation table for the primary components of the UI:

 1. Create columns with the following headers:

o Control For the elements identified as custom in your logical hierarchy.

o Control Type For the UIA Control Type of the element.

o Control Patterns For the required patterns necessary to implement the

accessibility of the control.

o Properties For the required automation element and control pattern properties

necessary to implement the accessibility of a UI element feature.

 2. Using your logical hierarchy as a reference, list each custom element in the Control

column. You can omit duplicate elements, such as list items or data items that share the

same characteristics with its peers. For example, the employee timecard has seven

unique controls for “Grid Item: Days,” but the design for each instance will be the same

(except for unique Properties such as the Automation Id).

 3. In the Control Type column, list the UIA Control Type that the element maps to. Again,

you should have this information as a result of mapping out the logical hierarchy for

your product.

Table 3-1 illustrates what the implementation table looks like for the employee timecard so

far.

TABLE 3-1 Employee Timecard Custom Controls

Control Control

Type

Control

Patterns

Properties

 Automation Element

Properties

Control Pattern

Properties

Data Grid: Calendar Data Grid

Grid Item: Days Grid Item

Header: Days Header

Header Items: Days of

Week

Header Item

 Chapter 3 Designing Your Implementation 31

Process A: Control Maps to a UIA Control Type
Designing the implementation for custom controls that map to a UIA Control Type is a two-

part process. You will:

 1. Gather all the UIA Specification requirements for the UIA Control Type and list them in

your implementation table.

 2. List any additional Patterns or Properties for the controls if they exhibit any additional

functionality, but make sure those additional Patterns or Properties do not contradict

with the UIA Specification.

All of the controls map to UIA Control Types in our employee timecard application, so we

proceed with Process A.

Step 1: Gathering Required Control Patterns

The first control in our table is the calendar grid, which maps to the DataGrid Control Type.

The UIA Specification provides a table of required Patterns supported by the Data Grid

Control Type (Table 3-2). We must go through each of these Patterns to verify which apply to

our specific custom control.

TABLE 3-2 Required UI Automation Control Patterns for the DataGrid Control Type

from the UIA Specification

Control Pattern Support Notes

Grid Pattern Yes The data grid control itself always supports the Grid Control Pattern

because the items that it contains have metadata that is laid out in a

grid.

Scroll Pattern Depends The ability to scroll the data grid depends on content and whether

scroll bars are present.

Selection Pattern Depends The ability to select the data grid depends on content.

Table Pattern Depends A data grid control that has a header should support the Table

Control Pattern.

Among the Patterns listed, only the Grid Pattern must always be supported by controls using

the DataGrid Control Type. The Scroll Pattern, Selection Pattern, and Table Pattern, however,

are dependent upon the specific data grid. Because the calendar grid in our timecard appli-

cation does not scroll, the Scroll Pattern does not apply. The user can, however, select items in

our grid, so the Selection Pattern also applies. Finally, our grid does support headers (which

run underneath each column), so it supports the Table Pattern, as well. In our implementation

table, we would, thus, list the Grid, Selection, and Table Patterns under the Control Patterns

column for our timecard grid (Table 3-3).

 Engineering Software for Accessibility 32

TABLE 3-3 Required Control Patterns for the employee timecard’s calendar grid

custom control

Control Control

Type

Control

Patterns

Properties

 Automation Element

Properties

Control Pattern

Properties

Grid: Calendar DataGrid Grid

Selection

Table

Step 2: Gathering Required Control Type Properties

The next step is to fill out our columns for the two types of Control Properties:

 1. Automation Element Properties

 2. Control Pattern Properties

Go further: For UI Automation Element and Control Pattern Properties, go to

http://go.microsoft.com/fwlink/?LinkId=150842.

2a. Required Automation Element Properties

The Automation Element Properties listed for each Control Type is a subset of all the Auto-

mation Elements available that are likely to describe the element. The AutomationId and

Name Properties appear on all Property lists for UIA Control Types. For the DataGrid Control

Type, the UIA Specification lists Automation Element Properties whose value or definition is

particularly relevant to DataGrid controls (Table 3-4).

TABLE 3-4 UI Automation Properties for the DataGrid Control Type from the UIA

Specification

Property Value Notes

AutomationId See notes The value of this Property needs to be unique across all

controls in an application.

BoundingRectangle See notes The outermost rectangle that contains the whole control.

ClickablePoint See notes Supported if there is a bounding rectangle. If not every

point within the bounding rectangle is clickable, and you

perform specialized hit testing, then override and provide a

clickable point.

ControlType DataGrid This value is the same for all UI frameworks.

 Chapter 3 Designing Your Implementation 33

Property Value Notes

IsContentElement True The value of this Property must always be True. This means

that the data grid control must always be in the content

view of the UI Automation tree.

IsControlElement True The value of this Property must always be True. This means

that the data grid control must always be in the control view

of the UI Automation Tree.

IsKeyboardFocusable See notes If the control can receive keyboard focus, it must support

this Property.

LabeledBy See notes If there is a static text label, then this Property must expose

a reference to that control.

LocalizedControlType See notes Localized string corresponding to the DataGrid Control

Type. The default value is "data grid" for en-US or English

(United States).

Name See notes The data grid control typically gets the value for its Name

Property from a static text label. If there is not a static text

label, an application developer must assign a value for the

Name Property. The value of the Name Property must never

be the textual contents of the edit control.

For all 10 Properties, we can apply values specific to the timecard’s calendar grid. For the

AutomationId, BoundingRectangle, ClickablePoint, IsKeyboardFocusable, LabeledBy,

Name, and LocalizableControlType Properties, which have no specified value, we must refer

to the UIA Specification to find the data type for the values needed for the Property. For each

of these variable Properties, we specify the Property values for the timecard in Table 3-5. Note

that the ClickablePoint Property is omitted because it is irrelevant for the timecard’s grid.

TABLE 3-5 Variable Automation Element Property values assigned for custom calendar

grid control

Automation Element

Property

Value Data Type Notes

AutomationId TimecardGrid VT_BSTR The value for the AutomationId

should be unique among siblings.

BoundingRectangle Coordinates

of table

onscreen

VT_R8|VT_ARRAY The value of the rectangle is expressed

in physical screen coordinates.

IsKeyboardFocusable False VT_BOOL The grid itself cannot receive keyboard

focus; only the grid items can.

LabeledBy Null VT_UNKNOWN Null because there is no text label for

the grid.

 Engineering Software for Accessibility 34

Automation Element

Property

Value Data Type Notes

Name “Calendar” VT_BSTR Typically, the value for the Name

Property should match the label

 text on screen. Because there is no

on-screen label, “Calendar” is

 assigned. In combination with the

LocalizedControlType Property,

the control may read as “Calendar

timecard grid.”

LocalizedControlType “timecard

grid”

VT_STR LocalizedControlType can be

modified to be more understand

able to the user. For English, it is

suggested that the string for the

LocalizedControlType Property

be typed in small caps because it will

be used in-line with the Name

Property.

With the required Automation Element Property values now defined, you can fill out the

Automation Element Properties column for the calendar grid. Table 3-6 shows what our table

looks like so far.

TABLE 3-6 Implementation table with the required Automation Element Properties and

their values for the employee timecard’s calendar grid custom control

Control Control

Type

Control

Patterns

Properties

 Automation Element Properties Control

Pattern

Properties

Grid: Calendar DataGrid Grid

Selection

Table

 AutomationId: TableHeader

 BoundingRectangle:

Coordinates of table onscreen

 ControlType: DataGrid

 IsContentElement: True

 IsControlElement: True

 IsKeyboardFocusable: False

 LabeledBy: Null

 LocalizedControlType:

“timecard grid”

 Name: “Calendar”

Go further: For data types and properties, go to http://go.microsoft.com/fwlink/?LinkId=150842.

 Chapter 3 Designing Your Implementation 35

2b. Required Control Pattern Properties

Each Control Pattern in UIA has Properties of their own that we need to implement. Using the

UIA Specification again, we can see what Properties are required for each Control Pattern and

assign a value for each Pattern Property. Table 3-7 lists the Property name, value assigned,

and notes about the Property for each Control Pattern.

TABLE 3-7 Control Pattern Property names and values for the timecard’s calendar grid

Control Pattern Property Name (Data

Type)

Value Notes

Grid Pattern ColumnCount

(VT_I4)

7 The total number of columns in a

grid. The control has seven

columns, one column for each day.

 RowCount

(VT_I4)

1 The total number of rows in a grid.

The control has one row of

columns.

Selection Pattern CanSelectMultiple

(VT_BOOL)

False A value that specifies whether the

container allows more than one

child element to be selected

concurrently. The user can only

select one column at a time, so the

value is false.

 IsSelectionRequired

(VT_BOOL)

False A value that specifies whether the

container requires at least one

child item to be selected.

Employees are not required to

select a column when viewing their

timecard, so the value is false.

Table Pattern RowOrColumnMajor

(VT_I4)

Column The primary direction of traversal

for the table. Column is chosen for

the timecard because users would

generally read the control by date,

which is in a column.

Now that we have determined what our Property values should be for each of the calendar

grid’s required UIA Control Patterns, we can fill out the Control Pattern Properties column as

shown in Table 3-8.

 Engineering Software for Accessibility 36

TABLE 3-8 Implementation table with the required Control Pattern Properties and

their values for the employee timecard’s calendar grid custom control

Control Control

Type

Control

Patterns

Properties

 Automation Element Properties Control Pattern Properties

Grid:

Calendar

DataGrid Grid

Selection

Table

 AutomationID: TableHeader

 BoundingRectangle:

Coordinates of table onscreen

 ControlType: DataGrid

 IsContentElement: True

 IsControlElement: True

 IsKeyboardFocusable: False

 LabeledBy: Null

 LocalizedControlType:

“timecard grid”

 Name: Calendar

Grid Pattern

 ColumnCount: 7

 RowCount: 1

Selection Pattern

 CanSelectMultiple: False

 IsSelectionRequired: False

Table Pattern

 RowOrColumnMajor: Column

Step 3: Gathering Requirements for Additional Control

Functionality

Now that we have finished listing in our implementation table all the Control Patterns and

Properties required by the UIA Specification for a DataGrid control, we need to list any

additional Control Patterns and Properties that apply specifically to our control.

The question now is “Does my control exhibit additional functionality, aside from the required

Control Patterns?” If the answer is yes, then determine what additional UIA Patterns or Prop-

erties the control maps to in UIA. If you absolutely cannot find a Control Pattern or Property

that exhibits the additional functionality of your control, then you must create custom Control

Patterns and Properties to describe your control, or its functionality, and include those in your

implementation table. Be aware, however, that your custom specifications are only useful if

UIA Clients can share and adopt your specifications. Refer to the UIA Community Promise

Specification and resources from the Accessibility Interoperability Alliance (AIA) for best

practices and guidance on maximizing usability.

In the case of our timecard’s calendar grid, it does exhibit some additional functionality. When

the user clicks one of the days in the grid, the Data Entry fields populate with any information

that has been previously entered for that day. The grid affects another part of the application,

 Chapter 3 Designing Your Implementation 37

the fields in the Data Entry group box. Because our grid exhibits additional functionality, we

must, then, identify and map this functionality to a UIA Control Pattern or Property and list

the requirements for that Pattern or Property in our implementation table. Looking at the UIA

Specification, we see that the ControllerFor Property best describes this other functionality

(Table 3-9).

TABLE 3-9 Description of the ControllerFor Property from the UIA Specification

Property Name (Data Type) Description

ControllerFor

(VT_UNKNOWN|VT_ARRAY)

An array of elements that are manipulated by the Automation

Element that supports this Property.

ControllerFor is used when an Automation Element affects

one or more segments of the application UI or the desktop;

otherwise, it is hard to associate the impact of the control

operation with UI elements.

Other than the ControllerFor Property, our calendar grid does not appear to exhibit any

additional functionality. We will go ahead and add these Properties to our table (Table 3-10).

TABLE 3-10 Completed implementation table for calendar grid custom control

Control Control

Type

Control

Patterns

Properties

 Automation Element

Properties

Control Pattern Properties

Grid:

Calendar

DataGrid Grid

Selection

Table

 AutomationID:

TableHeader

 BoundingRectangle:

Coordinates of table

onscreen

 ControlType: DataGrid

 IsContentElement: True

 IsControlElement: True

 IsKeyboardFocusable:

False

 LabeledBy: Null

 LocalizedControlType:

“data grid”

 Name: Calendar

 ControllerFor: Date

Picker, Hours Edit Box, and

Work Log Edit Box (This

Property can have multiple

things.)

Grid Pattern

 ColumnCount: 7

 RowCount: 1

Selection Pattern

 CanSelectMultiple:

False

 IsSelectionRequired:

False

Table Pattern

 RowOrColumnMajor:

Column

 Engineering Software for Accessibility 38

We have now finished designing the implementation solution for our first custom control

element in UIA. Before moving to the next element, it’s a good idea to check the UIA

Specification’s list of Properties to make sure that you have listed all the requirements for your

control’s functionality. As mentioned, all of our custom controls in the example can map to a

UIA Control Type, so we use the same process as the first control (Process A) for each of the

remaining elements and fill out the rest of our implementation table (Table 3-11).

TABLE 3-11 Completed implementation table for employee timecard custom controls

Control Control

Type

Control

Patterns

Properties

 Automation Element Properties Control Pattern Properties

Grid:

Calendar

DataGrid Grid

Selection

Table

 AutomationID: TableHeader

 BoundingRectangle:

Coordinates of table onscreen

 ControlType: DataGrid

 IsContentElement: True

 IsControlElement: True

 IsKeyboardFocusable: False

 LabeledBy: Null

 LocalizedControlType:

“data grid”

 Name: Calendar

 ControllerFor: Date Picker,

Hours Edit Box, and Work Log

Edit Box (This Property can have

multiple things)

Grid Pattern

 ColumnCount: 7

 RowCount: 1

Selection Pattern

 CanSelectMultiple:

False

 IsSelectionRequired:

False

Table Pattern

 RowOrColumnMajor:

Column

 Chapter 3 Designing Your Implementation 39

Control Control

Type

Control

Patterns

Properties

 Automation Element Properties Control Pattern Properties

Grid

Item:

Days

Data Item Grid

Item

Selection

Item

Table

Item

 AutomationId: “TC#” (# is

replaced by the number of the

column from 1 through 7, where

“TC1” would be Sunday)

 BoundingRectangle: Coor-

dinates of grid item onscreen

 ClickablePoint: any point on

screen clicked to select or focus

the grid item reliably.

 ControlType: GridItem

 IsContentElement: True

 IsControlElement: True

 IsKeyboardFocusable: True

 HasKeyboardFocus: True if the

grid item is focused, false

otherwise

 ItemStatus: “data entered” if

the grid data is entered, “empty”

otherwise

 LabeledBy: Null

 LocalizedControlType:

“timecard”

 Name: date of the grid (e.g.,

“Mon, March 02, 2009”)

Grid Item Pattern

 Column: 1 through 7

 ColumnSpan: 1

 ContainingGrid: Parent

Control

 Row: 1

 RowSpan: 1

Selection Item Pattern

 IsSelected: True if the

grid item is selected, false

otherwise

 SelectionContainer:

Parent table/grid control

(No Properties for Table Item

Pattern)

Header:

Days

Header None AutomationId: “Header”

 BoundingRectangle: Coor-

dinates of grid item onscreen

 ControlType: Header

 IsContentElement: False

 IsControlElement: True

 IsKeyboardFocusable: False

 Labeled By: Null

 LocalizedControlType:

“header”

 Orientation: Horizontal

 Name: “” (Nameless because

there is no other header in this

control)

 Engineering Software for Accessibility 40

Control Control

Type

Control

Patterns

Properties

 Automation Element Properties Control Pattern Properties

Header

Items:

Days of

Week

Header

Item

None AutomationId: “H#” (# is

replaced by the numer from 1

through 7 where H1 is for

Sunday)

 BoundingRectangle: coor-

dinate of header item on screen

 ClickablePoint: any point on

screen clicked to select or focus

the associated column

 ControlType: HeaderItem

 IsContentElement: False

 IsControlElement: True

 IsKeyboardFocusable: False

 LabeledBy: Null

 LocalizedControlType:

“header item”

 Name: label string of the element

(e.g., “Su” for Sunday header

item)

Go further: For the UIA Community Promise and best practices and guidance on maximizing

usability with interoperable implementations, go to http://go.microsoft.com/fwlink/

?LinkId=150842.

 Chapter 3 Designing Your Implementation 41

Process B: Control Does Not Map to a UIA Control Type
So far, we have walked through designing solutions for custom controls if the controls can

map directly to Control Types in UIA. What if your custom control does not map to a UIA

Control Type? If you find yourself in this situation, then you need to take every step to be

absolutely sure that your control cannot be mapped to another Control Type. To avoid

unnecessary development, documentation, and help costs associated with custom controls,

complete the following steps:

 1. Try to identify all Patterns and Properties required to describe them.

 2. Look at the UIA Control Type list again to see if there is a Control Type sufficient to map

to your control. If there is a Control Type that can be used for your control, fill out the

appropriate columns in your implementation table with the control’s requirements.

Note that because UIA allows you to add extra Control Patterns and Properties to an

existing Control Type (unless prohibited by the UIA Control Type Specification) without

making it into a completely new custom control, it is not necessary to match your

custom control exactly to a UIA Control Type. You can also offer a customized

description of the element based on the existing Control Type with an alternative

LocalizedControlType Property value.

 3. If there is absolutely no Control Type that can be used for your control, the “Custom”

Control Type can be applied. Fill out the appropriate columns in your implementation

table with the control’s requirements, and fill out the LocalizedControlType Property

with a string that would make sense to AT users.

 4. Document and publish your custom Control Type specifications where it is publicly

available, following the process defined by a UIA working group of the AIA, so that the

specification of the custom control is clear to the users and AT makers. To facilitate the

publishing process, it may also be helpful to ask a member of the AIA to publish your

specification.

 Engineering Software for Accessibility 42

Methods and Events
After determining your Control Types, Patterns, and Properties, you also need to know what

UIA Methods and Events are required. Methods, as you may recall from Chapter 1, provide a

way to expose a control's functionality per the UIA Specification. Events in UIA are raised to

notify clients, such as screen readers or screen magnifiers, that there is a change to the

Automation Element in the UI. Determining these Methods and Events is straightforward and

usually only requires checking the corresponding Method and Event specifications for Control

Patterns and Properties that your control supports. Table 3-12 lists the Properties and

Methods that are required to expose the functionality of the three Control Patterns in the

timecard data grid.

TABLE 3-12 Control Properties and Methods for the employee timecard’s Control

Patterns

Control Pattern Control Properties Methods

Grid ColumnCount

RowCount

GetItem

Selection CanSelectMultiple

IsSelectionRequired

GetSelection

Table RowOrColumnMajor GetColumnHeaders

GetRowHeaders

As you learned in Chapter 1, there are many different UIA Events. The UIA Specification

directs you on what Events you must raise for your custom control. Table 3-13 lists all the

Events that are supported by the data grid element and whether the Event is applicable to our

timecard application.

TABLE 3-13 Data Grid UI Automation Events applicable to the timecard’s custom grid

control

UI Automation Event Supported

AutomationFocusChangedEvent Yes

BoundingRectangleProperty

Property-changed Event

Yes

IsEnabledProperty Property-

changed Event

Yes

IsOffscreenProperty Property-

changed Event

Yes

LayoutInvalidatedEvent Not applicable. Timecard does not invalidate the layout.

StructureChangedEvent Yes

 Chapter 3 Designing Your Implementation 43

UI Automation Event Supported

CurrentViewProperty Property-

changed Event.

Not applicable. Timecard does not change its view mode.

HorizontallyScrollableProperty

Property-changed Event

Not applicable. Timecard does not support scrolling.

HorizontalScrollPercentProperty

Property-changed Event

Not applicable. Timecard does not support scrolling.

HorizontalViewSizeProperty

Property-changed Event

Not applicable. Timecard does not support scrolling.

VerticalScrollPercentProperty

Property-changed Event

Not applicable. Timecard does not support scrolling.

VerticallyScrollableProperty

Property-changed Event

Not applicable. Timecard does not support scrolling.

VerticalViewSizeProperty

Property-changed Event

Not applicable. Timecard does not support scrolling.

InvalidatedEvent Yes

Framework-Dependent Decisions
This chapter focused on designing your custom controls to meet the UIA Specification, but

the design stage does not stop here. Three areas that are framework-dependent that must be

determined (if they have not already been determined) are:

 1. Your framework’s requirements for providing programmatic access to the controls,

whether provided by the framework or custom. While standard controls of the UI

framework may support the basics for programmatic access, the flexibility for

accessibility can be limited to modifications.

 2. Determine how UI elements will handle keyboard focus. Controls that are actionable,

such as buttons and links, should receive keyboard focus. For Win32 common controls,

use the control styles in the resource file, and handle the system focus as needed.

 3. Ensure that your UI adheres to other accessibility requirements discussed in the

introduction of this book, such as high contrast, high dpi, and other system settings.

Once you have addressed these three areas, you are ready to take your designs into the

implementation stage.

Go further: For more information on adhering to accessibility requirements other than

programmatic access, go to http://go.microsoft.com/fwlink/?LinkId=150842.

 Engineering Software for Accessibility 44

Implementing Your Native UIA Solution
Your next challenge is determining how to implement the native solutions you have designed

over the last two chapters. How does your design actually map out to its implementation?

How do you take the requirements in your implementation table and actually use the UIA

framework to implement it? Because implementation is framework-dependent, this book

does not provide specific implementation details, but depending on the complexity of your

control, you do need to implement one or more of the UIA interfaces. These interfaces allow

you to implement the Control Patterns, Properties, Methods, and Events that you specified in

your implementation table.

Go further: For more information on how to implement your solution, go to

http://go.microsoft.com/fwlink/?LinkId=150842.

Rounding Up Native Solutions
As you design a logical hierarchy, you can see which controls are provided by the UI frame-

work and which are not. For controls that are not provided by the framework, you must create

a native accessibility solution to implement those controls. In this chapter, we walked through

the process of designing your implementation for those controls in UIA:

 For custom controls that map to a UIA Control Type, refer to the UI Automation

Specifications and list all the Patterns and Properties necessary. If your control exhibits

additional functionality other than those required by the UIA Specifications, then you

must also include those Patterns and Properties in your table.

 For custom controls that do not map to a UIA Control Type, you must identify and map

the functionality to Control Patterns or Properties that best exhibits the functionality of

your custom control and list those requirements in your implementation table.

Methods and Events are required for completing your UIA implementation. Although you still

need to specify how you will implement Methods and Events, the UIA Specifications detail

which Methods and Events are required for the specific Control Patterns and Properties.

Implementation for each custom control varies, so after designing the native solutions for

your custom controls, refer to the MSDN Web site on how to take your custom controls from

the design stage to actually implementing them in your product. The next chapter provides a

more in-depth discussion about testing the programmatic access and keyboard access of your

implementation and delivery of your product.

Go further: For common frameworks and their accessibility guidelines, go to

http://go.microsoft.com/fwlink/?LinkId=150842.

